If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y-51=0
a = 1; b = 14; c = -51;
Δ = b2-4ac
Δ = 142-4·1·(-51)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-20}{2*1}=\frac{-34}{2} =-17 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+20}{2*1}=\frac{6}{2} =3 $
| -49=-6b-7 | | 11m=24-8m=51 | | 4x+(-5)=53 | | 10+4x=-38 | | 894-y=366 | | 5x+5x-6=2x+18 | | 2x-84x+1= | | 6x+10+5x+22=360 | | -27=7x+8 | | 6x+10+5x+22=180 | | 4=h/13-14 | | 4x+30+6x=90 | | Y=20x+-100 | | 94=6t+8 | | 2(2x+3)=(6x+1) | | y+2.9=11* | | y-12-5=y | | -3a+5=4-4a | | x/12=^/5 | | -2x+28=2 | | -6n+4=5-6n | | 6m=12+8m-16 | | r+55/28=6 | | -5+2b=b-1 | | 2n+n–9=33 | | -5+6n=5n-1 | | -2w=4 | | –6k+10=–7k | | 2n+9–n=33 | | 11+17d=572 | | 4p-5=-5+3p | | 683=888-r |